Assessment of longitudinal myocardial stiffness is not enough to evaluate diastolic function: what is the relevance of the stiffness of cardiomyocytes in the transverse direction?
نویسندگان
چکیده
cardial stiffness, not only of the ventricle as a whole, but in isolated myocytes as well, which has extended knowledge of both the cellular and molecular mechanisms that regulate myocardial stiffness. Thus, it has been possible to relate the incomplete relaxation phenomenon with an increase in myocardial stiffness, now under more strict control of the variables. However, all of those studies have considered longitudinal myocyte changes, and did not assess modifications that could occur in the transverse axis. Consideration of changes in the longitudinal and transverse axes of the myocytes is particularly important when we address the fact that the structure of the ventricular wall and its cellular distribution is based on helicoidal muscular beams that intercross, giving the ventricular wall the appearance of a grid, which implies that if we would perform a transverse cut to the left ventricle, we would observe in that same cut some myocytes in the longitudinal axis, and others in the transverse axis. That complex structure of the ventricular wall indicates that resistance to stretching, which occurs during each cardiac cycle, is not going to be the same when we observe the myocyte either longitudinally or transversely. Hence, mechanical stress is not only transmitted longitudinally but transversely as well. In other words, during the cardiac cycle, while some myocytes would be generating a given stiffness along the longitudinal axis, others are going to be generating it along the transverse axis. Consequently, the influence on stiffness of incomplete relaxation will not be the same either. In regard to this, Yoshikawa et al4 assessed the effect of incomplete relaxation on myocyte stiffness along the transverse axis, in a model of myocardial hypertrophy induced by chronic administration of isoproterenol. The authors conclude that an alteration in the formation of the actin and myosin cross-bridges, which induced a state of incomplete relaxation, determined the increase in the myocytes’ transverse stiffness. The administration of butanedione monoxime, an inhibitor of the actin-myosin interaction, reversed the stiffness increase, thus confirming the described phenomenon. Although the concept of transverse stiffness of myocytes has been described previously,5 in the study by Yoshikawa et al,4 this phenomerom the pioneering works of Otto Frank and Ernest H. Starling by the end of the 19th century and in the early 20th, myocardial function began to be the subject of intensive studies. However, the numerous studies published at the time only referred to myocardial contraction and not to the diastolic component. This overlooking of the diastolic component was possibly because ventricular filling was considered a completely passive process that occurred only as a result of pressure gradients. In the 1960 s, the first studies of diastolic function appeared and from there the interest in this phase of the cardiac cycle increased. Such interest has continued to the present day, when systole and diastole are equally considered. It should be added that in the past 2 decades the prevalence of heart failure with preserved ejection fraction has increased, and the prognosis of those patients with diastolic dysfunction is poor.1 Detailed study of the diastolic function, not only in intact animals or in patients, but in isolated organs as well, and even at the cellular level, has enabled clear differentiation of 2 phases in the diastolic component: isovolumic relaxation, and myocardial stiffness.
منابع مشابه
Buckling Analysis of Variable Stiffness Composite Laminates by Semi-Analytical Finite Strip Method
Plates made of laminated composite materials with variable stiffness can have wide applications in various branches of engineering due to such advantages as high strength /stiffness to weight ratio. In these composites, curved fibers are used to reinforce each lamina instead of the straight fibers. In this paper, the application of finite strip method for the buckling analysis of moderately thi...
متن کاملEchocardiographic Evaluation of left Ventricular Function and Geometry in Pediatric Patients with Kidney Transplantation
Extended abstract Echocardiographic Evaluation of Left Ventricular Function and Geometry in Pediatric Patients with Kidney Transplantation Cardiovascular disease (CVD) is an important, leading cause of mortality and morbidity in patients with chronic kidney disease (CKD) as well as in renal transplant recipients. Cardiovascular complications become more important in children because of the i...
متن کاملDynamic Stiffness Method for Free Vibration of Moderately Thick Functionally Graded Plates
In this study, a dynamic stiffness method for free vibration analysis of moderately thick function-ally graded material plates is developed. The elasticity modulus and mass density of the plate are assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents whereas Poisson’s ratio is constant. Due to the variation of the elastic properties through ...
متن کاملMicrotubules modulate the stiffness of cardiomyocytes against shear stress.
Although microtubules are involved in various pathological conditions of the heart including hypertrophy and congestive heart failure, the mechanical role of microtubules in cardiomyocytes under such conditions is not well understood. In the present study, we measured multiple aspects of the mechanical properties of single cardiomyocytes, including tensile stiffness, transverse (indentation) st...
متن کاملExact Elasticity Solutions for Thick-Walled FG Spherical Pressure Vessels with Linearly and Exponentially Varying Properties
In this paper, exact closed-form solutions for displacement and stress components of thick-walled functionally graded (FG) spherical pressure vessels are presented. To this aim, linear variation of properties, as an important case of the known power-law function model is used to describe the FG material distribution in thickness direction. Unlike the pervious studies, the vessels can have arbit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation journal : official journal of the Japanese Circulation Society
دوره 77 3 شماره
صفحات -
تاریخ انتشار 2013